Spin-2 Scattering Amplitudes and Gravitational Portal Dark Matter

Elizabeth H. Simmons R. Sekhar Chivukla

PACIFIC 2024

Particle Astrophysics and Cosmology Including Fundamental InteraCtions.

UC San Diego

RSC, Dennis Foren, Joshua Andrew Gill, Kirtimaan Mohan, George Sanamyan, Dipan Sengupta, Xing Wang, EHS

Part 1: Dark Matter

Dark Matter Evidence

Gravitational Lensing in Bullet Cluster . Pink- X-Ray image Blue : Gravitational lensing image

 $\mathcal{D}_{\ell}^{TT} \left[\mu \mathrm{K}^2 \right]$

Properties and the Particle Physics of Dark Matter

- Cold and Neutral: Non relativistic today.
- Preserves the success of Big Bang Nucleosynthesis (Formation of Atoms and Nuclei in the early Universe)
- "Almost" **Dark** with respect to other forces of nature.
- Collisionless within the DM sector at large scales.
- Stable, on Cosmological time scales.
- Forms halos in the galaxy

What particle possible particle explanations are there for dark matter?

Dark Matter Models

Spin-2 KK Portal Dark Matter

Spin-2 Mediator

Randall Sundrum (RS-I) Model

$$ds^2 = e^{-2k|y|}$$

 $dt'(dt^2 - d\vec{x}^2) - dy^2$

Kaluza-Klein Gravitons

Gravity propagates in the finite bulk

$$\mathcal{L}_{int} = \frac{1}{\Lambda} \sum_{i} c_i X_i^{\mu\nu} (T^{SM}_{\mu\nu} + T^{DI}_{\mu\nu})$$

Potential LHC Resonances...

Extra-Dimensional Models with KK portals

Reuter, Rizzo, Hewett 2017, Sanz et al, 2017, Garny et al 2017, Olive, Mambrini et al 2019

KK Portal Dark Matter Production: Thermal Freeze-Out

Spin-2 Mediator

Production of Dark Matter in the Early Universe

A THERMAL ORIGIN

Simple and predictive Boltzmann equation governs evolution of number density "n"

 $\frac{dn}{dt}$

As Universe cools below DM mass, density decreases as e^{-m/T}

Eventually dark matter particles can't find each other to annihilate

freeze-out occurs

$$\frac{n}{d} = -3Hn - \langle \sigma_A v \rangle \left(n^2 - n_{\rm eq}^2 \right)$$

$$\sigma_A v \rangle = H$$

Schuster, 2019 FNAL DM Workshop

Thermal Freeze-Out Cross Section

WIMPS AND A THERMAL ORIGIN

Larger cross-section \Rightarrow later freeze-out \Rightarrow lower density

Correct DM density for: $\langle \sigma v \rangle \simeq 3 \times 10^{-26} \ \mathrm{cm}^3/\mathrm{s}$ $(20 \text{ TeV})^2$

Schuster, 2019 FNAL DM Workshop

1000

However: correctly computing the massive spin-2 scattering amplitudes is hard!

Brane Localized Scalar Dark Matter annihilating via a KK/massive spin-2 portal

Gravity-mediated Scalar Dark Matter in Warped Extra-Dimensions

PRL 116. 101302 (2016)

Planckian Interacting Massive Particles as Dark Matter

Mathias Garny,^{1,*} McCullen Sandora,^{2,†} and Martin S. Sloth^{2,‡} ¹CERN Theory Division, CH-1211 Geneva 23, Switzerland ²CP³-Origins, Center for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark (Received 20 November 2015; published 10 March 2016)

Miguel G. Folgado,^{*a*} Andrea Donini,^{*a*} Nuria Rius^{*a*}

Spin-2 portal dark matter

Nicolás Bernal,^{1,*} Maíra Dutra,^{2,†} Yann Mambrini,^{2,‡} Keith Olive,^{3,4,§} Marco Peloso,^{3,||} and Mathias Pierre^{2,¶} ¹Centro de Investigaciones, Universidad Antonio Nariño Carrera 3 Este # 47A-15, Bogotá, Colombia ²Laboratoire de Physique Théorique (UMR8627), CNRS, University of Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

A. Carrillo-Monteverde^{1,‡}, Yoo-Jin Kang^{2,3,*}, Hyun Min Lee^{2,†}, Myeonghun Park^{4, \clubsuit}, and Veronica Sanz^{1, \bigstar}

¹Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK. ²Department of Physics, Chung-Ang University, Seoul 06974, Korea. ³Center for Theoretical Physics of the Universe, Institute for Basic Science, Daejeon, 34051, Korea. ⁴Institute of Convergence Fundamental Studies and School of Liberal Arts, Seoul National University of Science and Technology. Seoul 01811. Korea

In fact, diffeomorphism invariance is restored in a full Kaluza-Klein theory and

Phys.Rev.D 100 (2019) 11, 115033

Phys.Rev.D 101 (2020) 7, 075013

Phys. Rev. D 107, (2023) 03505, PRD (submitted)

PHYSICAL REVIEW LETTERS

week ending 11 MARCH 2016

PHYSICAL REVIEW LETTERS **128**, 081806 (2022)

Massive Gravitons as Feebly Interacting Dark Matter Candidates

Haiying Cai^(b),^{1,*} Giacomo Cacciapaglia^(b),^{2,3,†} and Seung J. Lee^(b),[‡] ¹Department of Physics, Korea University, Seoul 136-713, Korea ²University of Lyon, Université Claude Bernard Lyon 1, F-69001 Lyon, France ³Institut de Physique des 2 Infinis de Lyon (IP2I), UMR5822, CNRS/IN2P3, F-69622 Villeurbanne Cedex, France

Dark Matter Direct Detection from new interactions in models with spin-two mediators

Naive (wrong) scaling of <u>KK-annhilation</u>:

Phys.Rev.D 101 (2020) 5, 055013

Phys. Rev. D 103 (2022), 095024

R. S. Chivukula, J.A.Gill, K. Mohan, G. Sanmyan, D. Sengupta, E.H. Simmons, X. Wang 15

Part 2: Scattering Amplitudes of Massive Spin-2 Particles

Reminder: Massive Spin-1 Scattering Amplitudes in the SM and KK Yang-Mills Theories

Weinberg-Glashow-Salam: SU(2) x U(1) @ E⁴

E⁴ divergences cancel due to YM Jacobi Identity

$$\epsilon_L^{\mu}(k) = \frac{k^{\mu}}{m_w} + O\left(\frac{m_w}{E}\right)$$

Weinberg-Glashow-Salam: SU(2) x U(1) @ E²

► $\mathcal{O}(E^0) \Rightarrow 4d \ m_H$ bound: $m_H < \sqrt{16\pi/2}$ ► If no Higgs $\Rightarrow \mathcal{O}(E^2) \Rightarrow E < \sqrt{4\pi} v \simeq 0$

Higgs boson couplings to gauge-bosons such that E² growth cancels between all contributions!

$W_L^ op$	Graphs	$g^2 \frac{E^2}{m^2}$
(c)	(a)	$+2-6\cos\theta$
	(b)	$-\cos\theta$
$\overline{V_L}$	(c)	$-\frac{3}{2}+\frac{15}{2}\cos\theta$
	(d + e)	$-\frac{1}{2}-\frac{1}{2}\cos\theta$
$\sqrt{3} v \simeq 1.0 \text{ TeV}$ 0.9 TeV	Sum including (d+e)	0
ns such that		

Lee, Quigg, Thacker

Five-Dimensional Yang-Mills: Spin-1 KK Modes

Expand 5-D gauge bosons in eigenmodes: for S^1/Z_2 : $\widehat{A}^a_\mu = \frac{1}{\sqrt{\pi R}} \left[A^{a0}_\mu (x) \right]$ $\widehat{A}_5^a = \sqrt{\frac{2}{\pi R}} \sum_{n=1}^{\infty} A_5^{an}$

4-D gauge kinetic term contains $\frac{1}{2}\sum_{n=1}^{\infty} \left[\frac{M_n^2 (A_\mu^{an})^2 - 2M_n A_\mu^{an} \partial^\mu A_5^{an} + (\partial_\mu A_5^{an})^2 \right] \quad \text{i.e., } A_L^{an} \leftrightarrow A_5^{an}$

e.g.

$$(x_{\nu}) + \sqrt{2} \sum_{n=1}^{\infty} A_{\mu}^{an}(x_{\nu}) \cos\left(\frac{nx_5}{R}\right)$$

$$x^n(x_
u) \sin\left(rac{nx_5}{R}
ight)$$

$$M_n = \frac{n}{R}$$

4-D KK Mode Scattering

Cancellation of bad highenergy behavior through exchange of massive vector particles

RSC, H.J. He, D. Dicus (2002) Csaki, Grojean, Murayama, Pilo, Terning (2004)

 $g^2 C^{ead} C^{ebc}$ $g^2 C^{eac} C^{edb}$ $q^2 C^{eab} C^{ecd}$ graph $6c(x^4 - x^2) \quad \frac{3}{2}(3 - 2c - c^2)x^4 \quad \frac{-3}{2}(3 + 2c - c^2)x^4$ (a) $-3(1-c)x^2 + 3(1+c)x^2$ $-2c(x^4 \downarrow x^2)$ (b1) $-4cx^4$ (c1) $\frac{-1}{2}(3-2c+c^2)x^4$ $\frac{1}{2}(3+2c-c^2)x^4$ (b2, 3) $+3(1-c)x^2 -3(1+c)x^2$ (c2, 3) $(-3+2c+c^2)x^4$ $(3+2c-c^2)x^4$ $-8cx^2$ $-8cx^2$ $-8cx^2$ $-8cx^2$ $-8cx^2 \Rightarrow 0$ Sum

 $\left(\frac{g}{d}\right)$

- metric and boundary conditions
- KK couplings related to overlap of KK

Important related paper: "Hidden" SUSY guarantees that "eaten" A₅ modes have masses correctly related to KK A_µ masses!

C.S. Lim (Kobe U.), Tomoaki Nagasawa (Kobe U.), Makoto Sakamoto (Kobe U.), Hidenori Sonoda (Kobe U.) (Feb, 2005) Published in: *Phys.Rev.D* 72 (2005) 064006 • e-Print: hep-th/0502022 [hep-th]

 Applies to any 5-D manifold with Lorentz Invariance for fixed x⁵: $A^{\mu} = \sum A_n^{\mu}(x^{\nu}) f_n(x^5)$ KK eigenvalues and wavefunctions depend on

wavefunctions: $g_{nmp} \propto \int dx^5 f_n(x^5) f_m(x^5) f_p(x^5)$

 Yields 4-D Lorentz-invariant effective field theory for infinite tower of KK modes.

Supersymmetry in gauge theories with extra dimensions

Symmetry Constrains Scattering Amplitudes: Equivalence Theorem

Gauge-Invariance of <u>5D YM</u> theory implies we can choose `t-Hooft-Feynman Gauge

- Rewrite theory including "unphysical" Goldstone (scalar) bosons, in "A₅" field
- Problematic longitudinal helicity amplitudes are, to leading order in energy, the same as those of the Goldstone bosons, by gauge-invariance
- Propagator and interactions such every diagram scales like $O(E^{0})$
- Hence, physical (unitary gauge) scattering amplitudes must also scale like O(E⁰)!

Interacting Massive Spin-2 Particles

Massive Spin-2 Particles and Degrees of Freedom

- Massless graviton represented by a symmetric traceless tensor with redundant degrees of freedom (local diffeomorphism invariance)
- In general a massless graviton in d dimensions has d(d-3)/2 physical degrees of freedom
 - Massless 4D graviton has 2 degrees of freedom, while a massless 5D graviton has 5 degrees of freedom.
- Mass term breaks diffeomorphism invariance A 4D massive spin-2 state has 5 degrees of freedom (2 spin-2 helicity states, 2 spin-1) helicity states and 1 spin-0 helicity state)

$$m^2((h_{\mu\nu})^2 -$$

states needed for the 4D massive KK spin-2 modes.

$$h_{\mu\nu} \to h_{\mu\nu} + \partial_{(\mu}\xi_{\nu)}$$

 $(-h^2)$ Fierz-Pauli Mass term (ghost-free in flat space)

• A compactified 5D theory of gravity, therefore, can provide the

Massive Spin-2 Helicity States and (Unitary Gauge) Propagator

Propagator

 $\frac{iB^{\mu\nu,\rho\sigma}}{P^2 - M^2} \qquad B^{\mu\nu,\rho\sigma} \equiv \frac{1}{2} \bigg[\overline{B}^{\mu\rho} \overline{B}^{\nu\sigma} + \overline{B}^{\nu\rho} \overline{B}^{\mu\sigma} - \frac{1}{3} (2 + q) \bigg] + \frac{1}{3} (2 + q) \bigg] = \frac{1}{2} \left[\overline{B}^{\mu\nu,\rho\sigma} \overline{B}^{\mu\sigma} - \frac{1}{3} (2 + q) \bigg] + \frac{1}{3} (2 + q) \bigg] = \frac{1}{2} \left[\overline{B}^{\mu\nu,\rho\sigma} \overline{B}^{\mu\sigma} - \frac{1}{3} (2 + q) \bigg] + \frac{1}{3} \left[\overline{B}^{\mu\nu,\rho\sigma} \overline{B}^{\mu\sigma} - \frac{1}{3} (2 + q) \bigg] \right]$

Mandelstam s $s \equiv (p_{i_1} + p_{i_2})^2 = (E_{i_1} + E_{i_2})^2$

$$\left[\frac{\phi}{F} \left[\mp \partial_{\theta} - \frac{i}{\sin \theta} \partial_{\phi} \right] \epsilon_{0}^{\mu} \right] \left[\sqrt{E^{2} - m^{2}}, E \hat{p} \right]$$

$$\delta_{0,M})\overline{B}^{\mu\nu}\overline{B}^{\rho\sigma} \qquad \overline{B}^{\alpha\beta} \equiv \eta^{\alpha\beta} - \frac{P^{\alpha}P^{\beta}}{M^{2}}\delta_{0,1} \qquad \text{Unitary Gauge } \dots$$
(absent when M=0)

Elastic Scattering of Helicity-0 Fierz-Pauli Massive Spin-2 Particles

Unitarity is violated at a scale $\Lambda_5 = (M_{pl}m^4)^{1/5} \ll M_{pl}$

Massive Spin-2 Fierz-Pauli Scattering to DM: Naive Expectation

 $B^{\mu\nu,\rho\sigma} \equiv \frac{1}{2} \bigg[\overline{B}^{\mu\rho} \overline{B}^{\nu\sigma} + \overline{B}^{\nu\rho} \overline{B}^{\mu\sigma} - \frac{1}{3} (2 + \delta_{0,M}) \overline{B}^{\mu\nu} \overline{B}^$ $i R^{\mu\nu,\rho\sigma}$ $P^{2} - M^{2}$

$$\int_{\alpha} h_{\mu\nu} = \mathcal{O}\left(\frac{E^6}{m^4 M_{Pl}^2}\right)$$

$$\overline{B}^{\rho\sigma} = \eta^{\alpha\beta} = \eta^{\alpha\beta} - \frac{P^{\alpha}P^{\beta}}{M^2} \qquad \text{Unitary Gauge ...}$$

Spin-2 RS1 KK Scattering Amplitudes

Randall Sundrum Model

Many options for perturbing vacuum. The **Einstein frame** parameterization is automatically canonical in 4D:

$$G_{MN} = \begin{pmatrix} e^{-2(k|y| + \hat{u})} (\eta_{\mu\nu} + \kappa \hat{h}_{\mu\nu}) & 0 \\ 0 & -(1 + 2\hat{u})^2 \end{pmatrix} \quad \hat{u} \equiv \frac{\kappa \hat{r}}{2\sqrt{6}} e^{+k(2|y| - \pi r_c)}$$

where κ characterizes the perturbation and $[\kappa] = [\text{Energy}]^{-3/2}$

Particles in 5D Matter-Free Randall-Sundrum Model:

- <u>5D Graviton</u> = $h_{\mu\nu}$, a massless spin-2 5D particle \triangleright Origin: local coordinate invariance of constant y sheets
- **5D** Radion $= \hat{r}$, a massless spin-0 5D particle ▷ **Origin:** locally perturbing distance between branes

The situation in a KK theory is different due to the underlying 5D diffeomorphism invariance

RS Fields and Interactions

$$\mathcal{L}_{4\mathrm{D}}^{(\mathrm{RS},\mathrm{eff})} \equiv \int_{-\pi r_c}^{+\pi r_c} dy \ \mathcal{L}_{5\mathrm{D}}^{(\mathrm{RS})}$$

Define $\mathcal{L}_{hH_rR}^{(RS)} \equiv$ all terms in $\mathcal{L}_{5D}^{(RS)}$ with *H* graviton fields and *R* radion fields. By construction, each term in this set is either • A-Type: has two spatial derivatives $\partial_{\mu}\partial_{\nu}$, or • **B-Type:** has two extra-dimensional derivatives ∂_u^2

$$\mathcal{L}_{h^{H}r^{R}}^{(\mathrm{RS})} = \mathcal{L}_{A:h^{H}r^{R}}^{(\mathrm{RS})} + \mathcal{L}_{B:h^{H}r^{R}}^{(\mathrm{RS})}$$
$$= \kappa^{(H+R-2)} \left[e^{k[2(R-1)|y| - R\pi r_{c}]} \overline{\mathcal{L}}_{A:h^{H}r^{R}}^{(\mathrm{RS})} + e^{k[2(R-2)|y| - R\pi r_{c}]} \overline{\mathcal{L}}_{B:h^{H}r^{R}}^{(\mathrm{RS})} \right]$$

Once we have a 5D theory, we convert it into an effective 4D theory via y-integration and Kaluza-Klein decomposition:

RS KK Interactions

$\mathcal{L}_{\mathrm{5D}}^{(\mathrm{RS})}$

which then imply 4D effective vertices via KK decomposition:

Lastly, there are 3 free parameters (κ, k, r_c) . For illustration ...

Lightest Spin-2 I **Unitless Parame 4D Planck Mass**

contains the following important vertices:

Mass:	$m_1 = 1 \text{ TeV}$
ter:	$kr_c = 9.5$
	$M_{\rm Pl} = 2.435 \times 10^{15} { m TeV}$

Individual Contributions to Helicity-0 RS1 Elastic KK Scattering

Cancellations in the RS Model

Cancellations in the RS Model (cont'd)

Cancellation enforced by sum-rules involving masses and couplings:

$$\sum_{j=0}^{+\infty} \mu_j^4 a_{nnj}^2 = \frac{4}{15} \mu_n^4 (4 a_{nnnn} - 3 a_{nn0}^2) + \frac{36}{5} \sum_{i=0}^{+\infty} a_{n'n'(i)}^2 ,$$

$$\sum_{j=0}^{+\infty} \mu_j^6 a_{nnj}^2 = -4 \mu_n^6 a_{nn0}^2 + 9 \sum_{i=0}^{+\infty} (4 \mu_n^2 - \mu_{(i)}^2) a_{n'n'(i)}^2 ,$$

$$KK \text{ sum} \text{ scalar sum}$$

SG

- STU: Radion
- nKKmax = 1
- nKKmax = 10
- nKKmax = 20
- nKKmax = 30
- nKKmax = 40
- nKKmax = 50
- nKKmax = 60
- nKKmax = 70
- nKKmax = 80
- nKKmax = 90
- nKKmax = 100

Summing over all intermediate KK and scalar states:

 $\mathcal{M}^{(3)} = \mathcal{M}^{(2)} = 0$

These sum-rules can be proved analytically... residual amplitude O(s)!

Next: amplitudes for DM production

Cancellations in DM Scattering to KK Gravitons

 E^2 <u>Sum rules</u> ensure that $|\mathcal{M}| = \mathcal{O}\left(\frac{\mathcal{L}}{M_{Pl}^2}\right)$

Symmetry, Gauge-fixing, & the Equivalence Theorem

Phys. Rev. D 106 (2022) 3, 035026 & 109 (2024) 7, 7

Gravitational Equivalence Theorem and Double-Copy for Kaluza-Klein Graviton Scattering Amplitudes

See also:

Yan-Feng Hang (Tsung-Dao Lee Inst., Shanghai and KLPAC, Shanghai and SKLPPC, Shanghai and Shanghai Jiaotong U.), Hong-Jian He (Tsung-Dao Lee Inst., Shanghai and KLPAC, Shanghai and SKLPPC, Shanghai and Shanghai Jiaotong U. and Tsinghua U., Beijing and Peking U., CHEP) Jul 14, 2022

't-Hooft-Feynman Gauge: Unphysical Goldstone Bosons

RS metric in conformal coordinates:

$$G_{MN} = e^{2A(z)} \begin{pmatrix} e^{-\kappa\hat{\varphi}/\sqrt{6}}(\eta_{\mu\nu} + \kappa\hat{h}_{\mu\nu}) & \frac{\kappa}{\sqrt{2}}\hat{A}_{\mu} \\ \frac{\kappa}{\sqrt{2}}\hat{A}_{\mu} & -\left(1 + \frac{\kappa}{\sqrt{6}}\hat{\varphi}\right)^2 \end{pmatrix}$$
$$A(z) = -\ln(kz) \qquad \qquad A'' - (A')^2 = 0$$

Bulk Einstein Equation

In unitary gauge: A_{μ} , $\varphi=0$

38

Quantum Mechanical "SUSY" relates two eigenvalue systems

- Consider an eigenvalue system of the form $D^{\dagger}D f(x) = \lambda f(x)$.
 - Requires an inner produce to define D⁺, and therefore boundary conditions on the functions f(x).
- Implies the system $DD^{\dagger}g(x)=\lambda g(x)$ has the same non-zero eigenvalues!
 - DD⁺(Df(x))= D(D⁺Df(x))=λ(Df(x)) hence g(x)=Df(x) solves second system, so long as Df(x) doesn't vanish!
- RS KK system hides TWO interleaved N=2 QM SUSY systems, which define the the tensor, vector, and scalar modes of the system and enforce their degeneracy!

't-Hooft-Feynman Gauge: Mode Expansions and SUSY

Mode Expansions

SUSY Relations in Vector-Graviton Sector:

$$D^{\dagger}Df^{(n)} = -(\partial_z + 3A')\partial_z f^{(n)} = m_n^2 f^{(n)},$$
$$DD^{\dagger}g^{(n)} = -\partial_z(\partial_z + 3A')g^{(n)} = m_n^2 g^{(n)},$$

$$\begin{cases} Df^{(n)} = m_n g^{(n)}, & \text{SUSY implies} \\ D^{\dagger} g^{(n)} = m_n f^{(n)}, & \text{have same m} \end{cases}$$

 $D = \partial_z, \quad D^{\dagger} = -(\partial_z + 3A'),$

ne

Einstein Equations relate sectors!
$$\overline{D}^{\dagger}\overline{D} - DD^{\dagger} = 2(A')^2 - 2A'' = 0 .$$

SUSY Relations in Vector-Scalar Sector:

oldstone

$$\overline{D}^{\dagger}\overline{D}g^{(n)} = -(\partial_z + 2A')(\partial_z + A')g^{(n)} = m_n^2 g^{(n)}$$
$$\overline{D}\overline{D}^{\dagger}k^{(n)} = -(\partial_z + A')(\partial_z + 2A')k^{(n)} = m_n^2 k^{(n)}$$

$$\begin{cases} \overline{D}g^{(n)} = m_n k^{(n)} \\ \overline{D}^{\dagger} k^{(n)} = m_n g^{(n)} \end{cases}$$

s modes ass!

$$\overline{D} = \partial_z + A', \quad \overline{D}^{\dagger} = -(\partial_z + 2A').$$

Supersymmetry and sum rules in the Goldberger-Wise model

#3

R. Sekhar Chivukula (UC, San Diego), Elizabeth H. Simmons (UC, San Diego), Xing Wang (UC, San Diego) (Jul 6, 2022) Published in: *Phys.Rev.D* 106 (2022) 3, 035026 • e-Print: 2207.02887 [hep-ph]

Supersymmetry in 5d gravity

C.S. Lim (Kobe U.), Tomoaki Nagasawa (Anan Coll. Tech.), Satoshi Ohya (Kobe U.), Kazuki Sakamoto (Kobe U.), Makoto Sakamoto (Kobe U.) (Oct, 2007) Published in: *Phys.Rev.D* 77 (2008) 045020 • e-Print: 0710.0170 [hep-th]

<u>`t-Hooft-Feynman Gauge Fixing:</u>

$$\mathcal{L}_{\rm GF} = \sum_{n} F^{(n)\mu} F^{(n)}_{\mu} - F^{(n)}_{5} F^{(n)}_{5},$$

$$F^{(n)}_{\mu} = -\left(\partial^{\nu} h^{(n)}_{\mu\nu} - \frac{1}{2} \partial_{\mu} h^{(n)} + \frac{1}{\sqrt{2}} m_{n} A^{(n)}_{\mu}\right),$$

$$F^{(n)}_{5} = -\left(\frac{1}{2} m_{n} h^{(n)} - \frac{1}{\sqrt{2}} \partial^{\mu} A^{(n)}_{\mu} + \sqrt{\frac{3}{2}} m_{n} \varphi^{(n)}\right)$$

Quadratic Mode Lagrangian:

$$\mathcal{L}_{2} = \sum_{n} \left(\frac{1}{2} h_{\mu\nu}^{(n)} \mathcal{D}_{h}^{\mu\nu\rho\sigma} h_{\rho\sigma}^{(n)} + \frac{1}{2} A_{\mu}^{(n)} \mathcal{D}_{A}^{\mu\nu} A_{\nu}^{(n)} + \frac{1}{2} \varphi^{(n)} D_{\varphi} \varphi^{(n)} \right)$$

SUSY insures modes have same masses

`t-Hooft-Feynman Gauge Propagators:

$$\begin{aligned} \mathcal{D}_{h}^{\mu\nu\rho\sigma} &= \frac{1}{2} \left(\eta^{\mu\rho} \eta^{\nu\sigma} + \eta^{\mu\sigma} \eta^{\nu\rho} - \eta^{\mu\nu} \eta^{\rho\sigma} \right) \left(-\Box - \eta \mathcal{D}_{h}^{\mu\nu} \right) \\ \mathcal{D}_{A}^{\mu\nu} &= -\eta^{\mu\nu} (-\Box - m_{n}^{2}), \\ \mathcal{D}_{\varphi} &= -\Box - m_{n}^{2}. \end{aligned}$$

No problematic "polarization projection" terms...

Goldstone Boson Equivalence Theorem

Equivalence Theorem:

$$\mathcal{M}\left[h_L^{(n_1)}h_L^{(n_2)}\cdots\right] = \mathcal{M}\left[\varphi^{(n_1)}\varphi^{(n_2)}\cdots\right] + \mathcal{O}(s^0),$$

't-Hooft-Feynman Gauge Scattering Amplitudes: O(s)!

Elastic KK Scattering

Since on-shell scattering amplitudes are gauge-invariant, the cancellations observed in unitary gauge must occur!

Generalization: Goldberger-Wise Stabilization

"Fix" values of Φ on branes, resulting in non-trivial background. Competition between kinetic and potential energy of scalar fixes size of extra dimension.

$$\begin{split} \mathcal{L}_{\Phi\Phi} &= \sqrt{G} \left[\frac{1}{2} G^{MN} \partial_M \hat{\Phi} \partial_N \hat{\Phi} \right] ,\\ \mathcal{L}_{\text{pot}} &= -\frac{4}{\kappa^2} \left[\sqrt{G} V[\hat{\Phi}] + \sqrt{\overline{G}} V_1[\hat{\Phi}] \delta_1(z - z_1) + \sqrt{\overline{G}} V_2[\hat{\Phi}] \delta_1(z - z_2) \right] \\ \hat{\Phi}(x^{\alpha}, z) &= \frac{1}{\kappa} (\phi_0(z) + \hat{\phi}(x^{\alpha}, z)) .\\ &\qquad A'^2 - A'' = \frac{1}{12} (\phi'_0)^2 ,\\ &\qquad Background EOM: \qquad e^{2A} V = -6A'^2 + \frac{1}{8} (\phi'_0)^2 ,\\ &\qquad 4e^{2A} \dot{V} = \phi''_0 + 3A' \phi'_0 , \end{split}$$

Equivalence theorem follows ... scattering amplitudes O(s)

Gravitation-GW Scalar sectors mix, but retain SUSY for those modes "eaten" by the KK gravitons!

$$\begin{split} \hat{\Psi}(x^{\alpha},z) &= \begin{pmatrix} \hat{\varphi}(x^{\alpha},z) \\ \hat{\phi}(x^{\alpha},z) \end{pmatrix} \\ \mathcal{L}_{h-\phi/\varphi} &= -\hat{h}_{\mu\nu} \left[\sqrt{\frac{3}{2}} \eta^{\mu\nu} D^{\dagger} \left(\overline{D}^{\dagger} \hat{\Psi} \right)_{1} \right], \\ \mathcal{L}_{A-\phi/\varphi} &= -\hat{A}_{\mu} \left[\sqrt{3} \ \partial^{\mu} \left(\overline{D}^{\dagger} \hat{\Psi} \right)_{1} \right], \\ \mathcal{L}_{\phi/\varphi-\phi/\varphi} &= -\hat{\Psi} \left[-\frac{1}{2} \Box + \frac{1}{2} \overline{D} \Lambda \overline{D}^{\dagger} \right] \hat{\Psi}, \\ \mathcal{D} &= \begin{pmatrix} \partial_{z} + A' & -\frac{1}{\sqrt{6}} \phi'_{0} \\ \frac{1}{\sqrt{6}} \phi'_{0} & -\frac{1}{\phi'_{0}} (\partial_{z} + 2A') \phi'_{0} \end{pmatrix}, \quad \overline{D}^{\dagger} = \begin{pmatrix} -(\partial_{z} + 2A') & \frac{1}{\sqrt{6}} \phi'_{0} \\ -\frac{1}{\sqrt{6}} \phi'_{0} & \frac{1}{\phi'_{0}} (\partial_{z} + A') + \frac{1}{6} \phi'^{2}_{0} \\ -\psi'_{0} (\partial_{z} + A') \frac{1}{\phi'_{0}} (\partial_{z} + 2A') \phi'_{0} + \frac{1}{6} \phi'^{2}_{0} \end{pmatrix} \end{split}$$

SUSY Relation follows if EOM are satisfied:

$$DD^{\dagger} = -\partial_z(\partial_z + 3A') = -(\partial_z + 2A')(\partial_z + A') + \frac{1}{6}\phi_0'^2 = H.$$

Part 3: KK Portal Dark Matter

Recall: Thermal Freeze-Out Cross Section

WIMPS AND A THERMAL ORIGIN

Larger cross-section \Rightarrow later freeze-out \Rightarrow lower density

Correct DM density for: $\langle \sigma v \rangle \simeq 3 \times 10^{-26} \ \mathrm{cm}^3/\mathrm{s}$ $(20 \text{ TeV})^2$

Schuster, 2019 FNAL DM Workshop

1000

Summary of the issue on computing the relic density of KK portal DM

Three types of diagrams contribute to the calculation of relic densities

Problem and Cure

Sum all KK modes in all diagrams + GW scalar

Residual non-vanishing amplitude $\mathcal{O}(s)$

Diagram by diagram, these grow as $O(s^2)$

Sum all KK modes in all diagrams + GW scalar Residual non-vanishing amplitude $\mathcal{O}(s)$ • $SS \rightarrow G_i G_j$: $\mathcal{M} = \frac{i\kappa_i\kappa_j}{24} (1 + 3\cos 2\theta) s + \mathcal{O}(s^0)$ • $SS \rightarrow G_i r_j$: $\mathcal{M} = \frac{i\kappa_i\kappa_j^{(r)}}{24} (1 + 3\cos 2\theta) s + \mathcal{O}(s^0)$ •⁴⁸ $SS \rightarrow r_i r_j$: $\mathcal{M} = -\frac{i\kappa_i^{(r)}\kappa_j^{(r)}}{24} (1 + 3\cos 2\theta) s + \mathcal{O}(s^0)$

KK Portal DM Freeze-Out

Velocity Averaged cross sections

For freeze-out, we need

Standard Model Contribution dominates over annihilation of KK states - Counting!

Velocity Averaged cross sections

 Enhanced scalar DM cross section with massive (100 GeV) radion. • New resonant contributions (purple) with Goldberger-Wise scalar exchange. • These couplings are proportional to radion mass ... exploring higher masses!

(Work in progress: enhanced cross section in the case of a massive radion...)

KK Portal Dark Matter Detection

Dark Matter Direct Detection Constraints

Limits on DM interaction strength with matter: weaker than weak!

Jocelyn Monroe, ICHEP 2024

Direct Detection (<u>coherent</u> coupling to energy-momentum tensor)

Spin-Independent direct detection cross section

$$\sigma^{\mathrm{SI}}\left(\Phi A \to \Phi A\right) \approx \frac{\mu_A^2}{144\pi m_A^2} \sum_{\Psi=\{u,d,s,c,b\}} \left(Zm_p^2 \bar{\mathcal{M}}_{\Psi}^p + \left(A - Z\right) m_n^2 \bar{\mathcal{M}}_{\Psi}^n\right)^2$$

$$\begin{array}{l} \propto -\frac{1}{4} \bar{u}_{\Psi} \left(Q_{2} \right) \left[\gamma^{\mu} \left(K_{2}^{\nu} + Q_{2}^{\nu} \right) + \gamma^{\nu} \left(K_{2}^{\mu} + Q_{2}^{\mu} \right) - \\ -2 \eta^{\mu \nu} \left(\mathcal{K}_{2} + \mathcal{Q}_{2} - 2m_{\Psi} \right) \right] u_{\Psi} \left(K_{2} \right) = V_{2}^{\mu \nu}, \\ \alpha - \sqrt{\frac{2}{3}} \bar{u}_{\Psi} \left(Q_{2} \right) \left[\frac{3}{4} \left(\mathcal{Q}_{2} + \mathcal{K}_{2} \right) - 2m_{\Psi} \right] u_{\Psi} \left(K_{2} \right) = V_{0}, \\ \hline \left(V_{2}^{\mu \nu} - \frac{1}{4} \eta^{\mu \nu} V_{2} \right) + \frac{1}{2} \eta^{\mu \nu} V_{2} = \tilde{T}_{\Psi}^{\mu \nu} + \frac{1}{4} \eta^{\mu \nu} T_{\Psi} \\ \hline \mathbf{Twist-2 \ operator} \\ \end{array}$$
Twist-0 operator

$$n_p^2 \bar{\mathcal{M}}_{\Psi}^p + (A - Z) m_n^2 \bar{\mathcal{M}}_{\Psi}^n \Big)^2$$

Collider Bounds on KK Gravitons ...

$$\mathcal{L} = -\frac{1}{\overline{M}_{Pl}} T^{\alpha\beta}(x) h^{(0)}_{\alpha\beta}(x)$$

Phys.Lett.B 822 (2021) 136651

$$-\frac{1}{\Lambda_{\pi}}T^{\alpha\beta}(x)\sum_{n=1}^{\infty}h^{(n)}_{\alpha\beta}(x).$$

KK Portal Dark Matter Constraints

Relic density, direct detection, collider combination

- Scalar DM never satisfy the relic density for sensible choices of parameters
- Fermion DM are ruled out by LZ direct detection limits
- Vector DM works in "portal region" where $m_G^{58} \approx 2m_{DM}$

Spin-2 KK Scattering Amplitudes

- Individual contributions to the scattering amplitudes grow as fast as O(s⁵) in unitary gauge.
- Cancellation occurs between the diagrams enforced by relationships between couplings and KK masses (proven).
- These cancellations are the result of the underlying 5D diffeomorphism invariance of the theory.
- Alternatively: examine theory in `t-Hooft-Feynman gauge, including unphysical spin-0 and spin-1 "Goldstone" bosons.
- Equivalence theorem insures that helicity-0 spin-2 scattering amplitudes equal those of the corresponding Goldstone scalars, which are O(s) by power-counting.
- Same remains true in a model with a stabilized extra dimension, and a massive radion.

Summary: Scattering Amplitudes

KK Graviton Portal Dark Matter

- Model determined (for fixed M_{PI}) by type of DM particle, Λ_{π} , m_G, m_{DM}
 - All cross-sections scale like s/Λ^4_{π}
 - Scalar and Fermion DM ruled out
 - Vector DM allowed, Λ above 10 TeV range, in "portal region" $m_G \approx 2m_{DM}$
 - Allowed region can reach to the neutrino floor, and below ...

Summary: KK Portal Dark Matter

